
4

COMPUTER SYSTEMS LABORATORY

STANFORD UNIVERSITY SUIM FORD, CA 94305-4055

Microsupercomputers: Design and

Implementation

AD-A233 155
Stanford University

Computer Systems Laboratory

Semi-Annual Technical Report

Defense Advanced Research Projects Agency

For the period of October 1990 - March 1991

Contract Number. N00014-87-K-0828

DTIC1 E!.. EC'T.:)>

MAR 2 17991 Principal Investigator
p.John L Hennessy

Associate Investigator

Mark A. Horowitz

AD .-

Semi-Annual Technical Progress Report

October 1990- March 1991

Contract No. N00014-87-K-0828

Order No. 1133

R & T Project Code: 4331685

This work is supported by the Defense Advanced Research Projects Agency and the Office
of Naval Research.

The views and conclusions contained in this document are those of the authors and should
not interpreted as representing official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

Table of Contents

1. Executive Summary, Goals and Accomplishments...............................I
2. Technical Prcgress ... 3

2.1 Parallel Processor Architecture.. 3
2. 1.1 The DASH Hardware 3
2.1.2 The DASH Operating System 4
2.1.3 Basic Architectural Studies...................................5
2.1.4 Simulation and Performnance Debugging Tools 7

2.2. Parallel Software.. 8
2.2.1 Parallel Applications Studies................................. 8
2.2.2 Data Dependence Analysis................................... 9
2.2.3 Automatic Blocking... 10
2.2.4 Jade Research .. 1

2.3. Uniprocessor Architecture ... 12
2.3.1 Super-Scalar Computers..................................... 12

2.4. Computer-Aided Design ... 12
2.4.1 Simulation... 12

3. Publications, Presentations, Reports .. 14
4. Project Staff ... 17

J:

DJist

1. Executive Summary, Goals and Accomplishments

DASH Parallel Processor. Our primary focus over the last six months has been the

construction of the DASH prototype. We received the fabricated boards that implement

the directory-based cache coherence last October. Since then we have been spending

most of the time on hardware and software debugging. At the time of this writing, we

have two 8 processor (2-cluster) prototypes mostly debugged and working. The

prototypes boot UNIX and we have been able to run applications on them. We plan to

put together a 16 processoi (4-cluster) system later this month.

Operating Systems for DASH. The DASH operating system kernel is currently running

on a 2-cluster dash machine, supporting full intercluster memory access, cached dash

locks, a master cluster based file system, master cluster swapping, and cluster and

processor attachment. Currently, file system and swapping system are being expanded to

support transparent multicluster access. Research is being done on operating system

support for memory management and scheduling.

Multiprocessor Architectural Studies: We are continuing to study techniques for coping

with the large latency of memory accesses in multiprocessors. Evaluating the techniques

of hardware coherent caches, relaxed memory consistency, software-controlled

prefetching, and multiple-context processors, we show that factors of 4 to 7 improvement

in performance can be obtained on modest-sized machines. We have also developed two
novel techniques that can significantly improve the performance of sequential consistency

on dynamically scheduled processors.

Efficient Simulation of Multiprocessors: We have continued development of Tango, our

multiprocessor simulation system. We have extended it to work with light-weight threads
and to run on multiprocessors. Our new Tango system performs fully-ordered

simulations about 25 times faster than our old version on a uniprocessor. We have also

developed two new tools that aid in performance debugging of parallel programs.

Parallel Applications: We have put together a suite of realistic parallel applications

(called SPLASH) to provide to the parallel processing community. We hope that a
coherent suite of good, realistic applications will allow consistent and comparable

architectural evaluations to be performed.

Con,'er kfiamement of Memory Locality: Blocking is an important optimization
directed to reduce the memory bottleneck found in most computer systems. It is the base

optimization technique used in the LAPACK library. We have been successful in

applying our automatic blocking algorithm to real codes such as matrix multiplication, a

successive over-relaxation (SOR) code, LU factorization without pivoting and Givens QR
factorization. Performance evaluation reveals that blocking can improve uniprocessor
workstations by a factor of 3-4; its impact on multiprocessor is even more significant as it
reduces memory contention, permitting a near-linear speed-up on multiprocessor systems.

Jade: We have made significant progress in the development of Jade, a language for
exploiting coarse-grain parallelism. Jade simplifies programming by providing the
illusions of sequential execution and a single address space, and it supports portability by
hiding the management of the hardware from the programmer. We have pushed the
fronts of both programmability and portability by studying the expression of new
applications in Jade, and implementing the language on different shared address space
machine platforms.

Parallel Simulation: The research on integration of existing simulators into a common
simulation paradigm to facilitate a parallel multi-level mixed-mode simulator during this
period was concentrated mainly on the development of a prototype on an Intel iPSC/860
message-passing machine. An earlier prototype of a distributed multi-level mixed-mode
simulator on conventional workstations has also been tested during this period.

2. Technical Progress

2.1 Parallel Processor Architecture

2.1.1 The DASH Hardware
Since our last report, we have made considerable progress towards completing the 16
processor DASH prototype. The reply controller board was received from fabrication in
early October. Within a week after its receipt, we had a single cluster system on which we
were able to run diagnostics. After a few problems involving misunderstandings of the
underlying Silicon Graphics hardware were fixed, we were able to connect two clusters
together. A number of diagnostics have been run over the two cluster system, extensively
testing the basic coherence protocol. Currently, we have a two-cluster DASH system set
up at Silicon Graphics, with a second two-cluster machine set up at Stanford. The system
at Silicon Graphics is used for hardware debug, while the system at Stanford is used for
operating system development and hardware performance monitoring. We plan to
integrate the two systems into a single 16 processor system by the end of March.

The debugging effort of the DASH hardware has made steady progess.The extensive
simulation of the directory-controller and reply-controller boards has paid off well, as the
basic data path of both boards has remained unmodified. In addition to the test vectors
generated by the functional simulator, vectors corresponding to cases not modelled in the
simulator were generated by hand. A few bugs were discovered in the logic that handled
these cases, as the simulation coverage there was less complete. An example of an error
encountered involved backdoor access of the Remote Access Cache. Which was getting
improper data due to a control signal not being held valid during the backdoor cycle.
However, no major problems with the coherence protocol have been found. Most c- the
modifications to the protocol ROM have resulted from either our own omissions of
protocol actions for a couple of states or a miscommunication of state between the reply-
controller and directory-controller boards.

The network, which was not modelled in the DASH simulation, proved to be more of a
problem. First, crosstalk between adjacent signals on the cable connecting the clusters
was causing bits to be corrupted. Special cables in which all signals are separated by a
ground, as opposed to a cable containing a single ground plane under the signals has
solved the crosstalk problem. More recently, diagnostics written specifically to stress the
network uncovered a second problem. Under heavy loading, duplicate network flits were
appearing at the output of the mesh routing chips. The network receive logic caught
thesm. ,ackets. which had the wrong length, so detection of the problem was relatively
straightforward. However, isolation of the problem proved to be more difficult. A good
portion of this difficulty was due to the asynchronous nature of the mesh routing chips.

Changes in the interface logic to the mesh routing chips would create subtle changes in

the timing of the network handshake signals. These changes would in turn alter the

frequency with which the problem occurred. After many weeks of debugging, a

connection between timing of the packets entering and leaving the mesh routing chip and

the error was observed.

Testing of the routing chip in isolation confirmed the relationship. If the request signal

for a packet entering the chip was slowly rising at the same time as the request signal for
the packet leaving the chip was quickly falling, a glitch on the rising incoming request
signal would be generated. This glitch got interpreted as a pair of requests inside the
chip, and the extra flit was generated. On the mesh routing chip, the pins for the request
in and request out signals are physically adjacent, allowing this signal coupling to occur.
As a short term solution, the timing of the network requests has been slowed to avoid the
simultaneous switching of the requests in and out of the mesh routing chip. This solution
has solved the problem in our two-cluster system, however, as a longer term solution we
plan on speeding tip the edge rates of the requests between mesh routing chips. This will
be done by routing the request signal from the cable to a buffer and then to the mesh
routing chip, instead of directly from the cable to the chip. Since the request in from the
cable will now rise faster, the coupling with the request out of the mesh routing chip will
be unable to induce the glitch.

The DASH hardware debugging continues, though we can already boot UNIX and run
parallel programs. A diagnostics shell provides a regression suite to check new board
changes, and the DASH protocol verifier (DPV) has been ported to the DASH hardware.
Hardware problems and software problems with DPV itself prevented its use as a

debugging tool until recently. Both the software and hardware problems have been
solved, and we plan on using DPV to complement the diagnostics in the DASH hardware
test effort.

2.1.2 The DASH Operating System
The DASH Operating System kernel is currently running on a 2-cluster DASH machine,
supporting full intercluster memory access, cached DASH locks, a master cluster based
file system, master cluster swapping, and cluster and processor attachment. This
operating system version has been tested by executing a series of parallel applications as
well as 10 intensive parallel compilations. To facilitate hardware and software testing
and debugging, we have implemented a multithreaded diagnostics support library that
allows running threads on different processors directly on the bare hardware, without the
assistance of the operating system.

4

We are working on several operating system enhancements for DASH. A virtual page
cluster attachment mechanism is being implemented to support efficient NUMA
placement and replacement policies. The file system and swapping system are being
expanded to support transparent multicluster access. We have also been doing research
on scheduling issues for machines like DASH, and we have developed a novel two-level
scheduler that offers high performance by combining the approaches of process control
and processor partitioning [1], [2].

The process control approach is based on the principle that to maximize performance, a
parallel application must dynamically match the number of runnable processes associated
with it to the effective number of processors available to it. This avoids the problems
arising from oblivious preemption of processes and it allows an application to work at a
better operating point on its speedup versus processors curve. The processor partitioning
is necessary for dealing with realistic multiprogramming environments, where both
process controlled and non-controlled applications may be present. It also helps improve
the cache performance of applications, We have currently implemented this scheduler on
the single cluster of a DASH multiprocessor. Our experiments show that process control
can improve performance by as much as two-fold when multiple applications are run
simultaneously. We expect to see even more advantage on the multi-cluster DASH,
where processor partitioning may be used to restrict an application to one or more clusters
when the system is heavily loaded, while still allowing full use of the machine when there
is less load.

2.1.3 Basic Architectural Studies
Techniques that can cope with the large latency of memory accesses are essential for
achieving high processor utilization in scalable shared-memory multiprocessors. We
considered four important architectural techniques that address the latency problem.
namely (i) hardware coherent caches, (ii) relaxed memory consistency, (iii) software-
controlled prefetching, and (iv) multiple-context processors. While some data has been
available in the past regarding the benefits of the individual techniques [3]. 14]. no study
evaluates all of the techniques within a consistent framework. We have closed this gap
by providing a comprehensive study of the benefits of the four techniques, both
individually and in combinations, using a consistent set of architectural assumptions [5].
The results have been obtained using detailed simulations of a large-scale shared-memory
multiprocessor. and the results show that caching shared data and relaxed consistency
uniformly improve performance. The improvements due to prefetching and multiple
context,; are sizeable. but are much more application-dependent. Combinations of the
various techniques generally attain better performance than each one on its own. The
exception is multiple contexts with prefetching, which did not work well together.

Overall, we show that using suitable combinations of the techniques, a factor of 4 to 7
improvement in performance can be obtained.

On the subject of memory consistency, we have been continuing our performance
evaluation for processors with non-blocking loads to complement our previous results for
blocking loads. We have also concentrated on making it easier for a programmer to use
architectures with relaxed models. Our previous research addressed this issue by
showing that a release consistent architecture provides sequentially consistent executions
for programs that are free of data races. However, the burden of guaranteeing that the
program is free of data races remained with the programmer. To aid the programmer
further, we have developed a unique architectural feature that determines whether
sequential consistency is violated in architecture supporting a relaxed consistency model.
For eveiy execution of the program, the technique determines either that the execution is
sequentially consistent or that the program has data races and may result in sequentially
inconsistent executions. The above mechanism maintains the high performance
associated with relaxed consistency models and can be used during normal executions of
the program. If the execution is sequentially consistent, the programmer is assured that
the relaxed consistency model did not affect the correctness of that execution. And if it is
determined that the progam has data races, then the programmer knows that it is possible
to get sequentially inconsistent results if that program is executed on architectures
supporting relaxed models.

We have also studied more efficient implementations of sequential consistency for
programnmers who are not willing to deal with the extra complexity introduced by
relaxing the consistency models. Previously, it was widely believed that sequential
consistency could not be implemented without a high performance penalty. We have
proposed two techniques that boost the performance of sequential consistency and allow
performance close to that of relaxed models like release consistency [6]. The first
technique involves prefetching values for accesses that are delayed due to consistency
model constraints. The second technique employs speculative execution to allow the
processor to proceed even though the consistency model requires the memory accesses to
be delayed. We are currently studying the performance of these techniques.

Another area of ongoing investigation has been to evaluate the implementation and
performance trade-offs of limited pointer directories for cache coherence 171, [8].
Limited pointer techniques are important to scale directory-based machines to large
processor counts. These directories maintain cache coherence by storing several pointers
with each main memory block: identifying those caches containing the block. By
applying an analytic model of parallel workload behavior (verified against multiprocessor
address traces) to the state transition graphs implemented by the directory, we can easily

6

estimate the performance of limited pointers under various large-scale workloads. While
we have demonstrated that linfited pointer directories show good performance in general,
blocks that exhibit a high ratio of read to write references yield performance levels that
are suboptimal. We have recently developed a scalable dynamic pointer allocation

directory that shows good potential for supplying the highest performance possible under
all but the most extreme workload conditions. Rather than building a fixed number of
pointers per entry into the hardware, this scheme allocates pointers as they are needed
from a pool of available pointers. We have identified the differences in the resulting
protocol relative to standard limited pointers directory organizations, including the steps
taken in exceptional circumstances, such as running short of available pointers. We have
also detailed one possible implementation approach and examined some potential

performance optimizations.

2.1.4 Simulation and Performance Debugging Tools
We have continued development of our Mrultiproces.or simulation system. Tango. While
Tango is faster than our previous tools and has enabled many useful studies, large

simulations (involving hundreds of processors, complex memory hierarchies, and large
applications) are often too time-consuming to be practical with Tango. Our goal is to
speed simulations in three ways: (i) we have developed a successor to Tango that uses
light-weight threads instead of full-weight processes: (ii) we are extending light-weight
Tango to run effectively on multiprocessors and ultimately on DASH; and (iii) we are
investigating the usefulness of simpler memory simulators for studies of complex
memory hierarchies. This is critical since simulation of the network and memory system
dominates total simulation time in many experiments. We believe that memory
simulations can be made less expensive by carefully analyzing the level of detail required
in simulation models and judiciously trading-off accuracy for efficiency. The new Tango
performs fully-ordered simulations about 35x faster than the old on a uniprocessor.

We are currently working on two tools that aid in performance debugging of programs.

Our first tool is called MTOOL [9]. It provides support for performance debugging of
parallel programs. The current implementation is for programs written with the ANL
macros running on MIPS-based multiprocessors (including DASH). In just more than
twice the time for a single execution of a parallel C or Fortran application on a given
input, MTOOL will develop hierarchical information on the distribution of execution
time for the program on that input broken down into:

I. CPU execution time
2. k", crhead in a,.,c-sing the memory hierarchy
3. Idle time waiting on synchronization (locks and barriers)
4. Parallel overhead
5. System Time

7

The first four classes of execution time may be viewed for the whole program, per

process, per procedure, and loop level. MTOOL constructs its program profile using a

combination of timer calls and execution time estimates based on basic block counts.

The basic block counting is accomplished with at a minimal perturbation to the program.

The basic block count information allows MTOOL to construct the CPU execution time

numbers, which in conjunction with measured execution times, enable MTOOL to

estimate the memory hierarchy overheads.

To understand and remedy performance bottlenecks, users often require information

about memory behavior at an even lower level than what MTOOL provides, that is, at the

level of individual data structures and procedures. Our second tool provides information

such as cache miss rates, memory latencies, and causes of cache misses. It helps the user

determine: whether the miss rate is high because of cold start misses. invalidation misses,

or replacement misses, which data structures are interfering with each other, and further

information about the program execution at this level. By systematizing a process to

associate regions of shared memory with high level program names, we can present data
to users in terms of data structures and procedures they are familiar with, rather than, for

example, in terms of cache blocks. In its current form, this memory characterization tool
works with the Tango memory simulator. We intend to further develop the tool by

creating a version which uses the DASH hardware performance monitor to collect
program events in real-time, rather than through Tango simulations. We consider this

tool to be an important component of a complete performance debugging framework
which provides the user with information both on where a program's performance

bottlenecks are, and why they are occurring.

2.2. Parallel Software

2.2.1 Parallel Applications Studies
Designers of parallel systems are faced with a chicken and egg problem regarding
applications software. Few real applications exist to guide their design, and users are
unwilling to write new applications for systems that do not exist. The result is that
studies done to evaluate system features often base their conclu:,ions on -toy- programs
that bear little resemblance to, or are only a part of, the codes people will actually run on

these systems. We have put together a suite of realistic parallel applications (called
SPLASH) to provide to the parallel processing community i 101. We hope that a coherent

suite of good, real applications will allow consistent and comparable evaluations to be

performed. We have also put together a detailed documentation of the ipplications and

their characteristics, providing a common reference point for the writers and readers of
evaluation studies. The a~plications and documentation are likely to be released within
the next few weeks. The programs, many of which have been developed at Stanford,
include five complete applications (an ocean simulation, a N-body molecular dynamics

8

simulation, a Monte Carlo rarefied hypersonic flow simulation, a global router for VLSI,

and a distributed-time circuit simulator) and three basic routines (two graph problems and

a sparse Cholesky factorization routine). Three other applications-a finite element

program, the Greengard-Rokhlin adaptive algorithm for N-body problems, and a

multigrid solver-are currently under development.

We have also been continuing our research on scalable parallelism in some real scientific

applications. Dividing the problem into finding parallelism and implementing it for

efficient performance, we are taking a quantitative look at the impact of various

transformations in enhancing scalable performance. We are trying to learn from this

effort what types of issues the programmer must be concerned about if scalable

performance is desired, what features are most desirable in parallel tools and

environments, and what the implications are for the design of scalable architectures.

Some results on finding parallelism have already been reported: the recent emphasis has

been on the tradeoff between data locality (for which results will soon be available) and
load-balancing, as well as on detailed interactions with a high-latency hierarchical

memory system.

One parallel application that we have been studying in great detail :s sparse Cholesky

factorization. We have been considering alternative strategies for distributing the sparse

matrix among the processors to increase concurrency and reduce communication. In
particular, we have been looking at methods that distribute rectangular submatrices of the

sparse matrix among the processors, instead of the more traditional approach of

distributing entire sets of columns (supernodes). The asymptotic advantages of

submatrix-oriented methods are easily demonstrated through simple growth-rate

calculations. However, preliminary results indicate that these advantages do not come

into play for matrix sizes and multiprocessor configurations that we see now or expect to

see in the near future. Our immediate goal is to determine at what problem and machine

sizes the asymptotic advantages of such techniques will become important.

2.2.2 Data Dependence Analysis
In previous work, we had developed a data dependence analysis system which allowed us

to give exact results efficiently in all cases we have seen in practice. Our old algorithm

required all references and bounds to be linear functions of the induction variables. In the

past half year, we have successfully extended our system to handle unknown symbolic

terms, without loss of efficiency. It was commonly believed that symbolic testing is very

important in data dependence analysis. Our empirical results indicate that symbolic

testing expands the number of unique dependence analysis tests by only about 10%, a

much lower number than expected. This can be attributed to the fact that, besides being a

parallelizer, our compiler is also an optimizing scalar compiler. It employs aggressive

9

optimizations, including constant propagation, induction variable detection and forward
substitution, which tend to reduce the number of symbolic terms in array references. This
demonstrates the importance of integrating the scalar and parallelizing compilers into one
system.

We have also compared the quality of our algorithm to more standard methods: the GCD
test and Banerjee's test. The programs we used for comparison are the Perfect Club
Benchmarks, a set of 13 scientific Fortran programs ranging in size from 500 to 18,000
lines. Our algorithm is able to detect 16% more independent references, resulting in 22%
fewer direction vectors than these algorithms. This can potentially lead to a much greater
degree of exploitable parallelism [11].

2.2.3 Automatic Blocking
We have developed a mathematical formulation of the data locality optimization problem.
We introduce two concepts: the reuse vector space and reuse factors characterize the
potential reuse in an algorithm. The localized vector space, created by blocking or tiling,
is the space in which reuse can be exploited, The locality value is derived from the
intersection of these two vector spaces. The data locality optimization problem is to find
a unimodular and tiling transform that optimizes the locality value [12].

This analysis yields two important results. First, all transformed code with the same
localized vector space belong to the same equivalence class. This observation
significantly prunes the search for the optimal transformation. Second. the locality value
is much more sensitive to the dimensionality of reuse exploited than to block sizes, this
leads to the approach of choosing the loops to block innermost before choosing the block
size.

Unlike the stepwise transformation approach used in existing compilers, our loop
transformer uses a compound transformation that combinLs permutation. skewing and
reversals directly. This is made possible by our theory that unifies loop transformations
as unimodular matrix transformations on dependence vectors with either direction or
distance components. The algorithm extracts the depen(>nce vectors, determines the best
compound transform, then transforms the loops and their loop bounds once and for all.
The elegance of the theory significantly simplifies the implementation of the algorithm.
Programs the algorithm can block successfully include matrix multiplication, successive
over-relaxation (SOR), LU factorization without pivoting, and Givens QR factorization.

Evaluation of the performance on a SGI 8-processor machine indicates that blocking is
very important. Blocking improves the performance on a single processor by a factor of
2.75. The effect of tiling on multiple processors is even more significant since it not only

10

reduces the average data access latency but also the memory bandwidth required.
Without blocking, contention over the memory bus limits the speedup to about 4.5 times.
Blocking permits speedups of over seven for eight processors, achieving an impressive
speed of 64 MFLOPS.

2.2.4 Jade Research
Given the current proliferation of parallel architectures, programmers should not have to
rewrite their parallel applications for each different machine. Jade provides a high-level
concurrency model that insulates the programmer from the low-level machine specific
details. To demonstrate this portability, we have implemented Jade on several different
platforms, including the Encore Multimax, the Silicon Graphics IRIS 4D/240 and the
Stanford Tango simulator running on a sequential machine. The programmer can
concentrate on providing the high-level information necessary to parallelize the
application, while the Jade system maps the computation efficiently onto the hardware.
Given our experience porting Jade to these different platforms, we expect to port Jade
easily to the Stanford DASH Multiprocessor [13].

We have tested our design of the Jade language by implementing several large
applications. These applications illustrate how Jade supports both irregular dynamic
dependencies. as well as structured static dependence patterns. One of these applications
is sparse Cholesky factorization-the computational bottleneck of such important
computations as linear programming, device simulation and finite-element analysis. This
application parallelizes well in Jade even though the parallelism is highly dependent on
the input data. The UNIX make utility, another application with irregular parallelism. is
also easily parallelized with Jade. We have also parallelized a number of additional
applications which have more regular concurrency patterns. These include LocusRoute, a
VLSI circuit router, and the Perfect Club benchmark MDG.

We have investigated various performance enhancements for the Jade system. based on

our work on Jade applications and the demands of modern multiprocessor architectures.
One of the most critical issues in achieving high performance on these modern
multiprocessors is optimizing for data locality. We are currently investigating a task
placement heuristic for Jade that attempts to minimize the amount of data that must be
transferred between processors. This heuristic executes tasks accessing the same data on
the same processor.

11

2.3 Uniprocessor Architecture

2.3.1 Super-Scalar Computers
For the past six months, we concentrated on the hardware and software aspects of the new
architecture proposed for superscalar processors. This architecture combines the
advantages of dynamic and static scheduling techniques, while minimizing the short-
comings of each, to increase the performance of non- numerical applications. This is
accomplished through a technique called boosting which allows the compiler to use
sophisticated scheduling techniques on both sequential and speculatively-executed
instructions. Efficient speculative execution is supported by shadow structures in the
hardware that commit boosted state on correct branch prediction and squash boosted state
on incorrect predictions.

Currently, a group of five graduate students are looking in depth at the issues involved in
building a VLSI processor to support boosting and superscalar execution. We have a
logic-level simulator running, and are in the process of determining exactly what
hardware is needed to implement each of the functions in the simulator. We are also
beginning work on an instruction-level simulator to allow us to verify the results of our
logic-level simulator.

Work continues on the scheduling passes for our compiler system that will generate code
for our architecture. A significant amount of time has been spent trying to allow one to
easily change the underlying instruction set without having to make major changes to the
scheduler or to the scheduling algorithms. To aid in the development of the hardware, we
have also coded a simple assembler to allow us to create programs for the hardware

simulator.

2.4 Computer-Aided Design

2.4.1 Simulation
Parallel simulation and CAD applications have been proposed to further explore the
potentials of the DASH multiprocessor machine and of parallel paradigms in general.
Parallelism is obtained at a simulator level by decomposing its simulation into smaller
blocks and managing the communication and synchronization of these blocks, as
described in earlier reports.

The first pro:,i.: . :he parallel multi-level simulator was tested on conventional
workstations. The second step is to extend the prototype onto parallel machines. We have
successfully ported the simulator onto an Intel N-cube multiprocessor and will

12

eventually, after the DASH multiprocessor machines is stabilized, test the simulator on

DASH.

During the last six months, we continued the testing of the first prototype on a network of
workstations. The performance gain of using multiple workstations in concurrent

simulation was tapered by the communication overhead; still we obtained a speedup
factor of 2 or more by running parallel multi-level simulation on five workstations. The
correctness of the simulation, and thus the parallel programming of our multi-level
mixed-mode simulator, was also verified.

The second prototype was developed on an Intel iPSC/860 message-passing machine and
it is currently being tested. The decision to install the second prototype on the iPSC/860
was based on machine availability and a match with our framework of communication
mechanism that exchange information through messages. The prototype installation on
the iPSC/860 requires a change of localized portions of the simulation kernel that handles
the communication between different instances of the simulation nodes. It also requires
us to port the simulation programs being integrated (THOR, SPICE, and IRSIM, at the
moment) to the Intel iPSC/860 node. The performance gain of using a message-passing
multiprocessor for parallel multi-level simulation will be tested and measured.

13

3. Publications, Presentations, Reports
I. Gupta, A., Tucker, A. and Urushibara, S., The Impact of Operating System

Scheduling Policies and Synchronization Methods on the Performance of Parallel
Applications, ACM SIGMETRICS '91, May, 1991.

2. Tucker, A., Stevens, L. and Gupta. A. "Making Effective Use of Shared-Memory
Multiprocessors: The Process Control Approach," October, 1991. Submitted for
publication.

3. Gharachorloo, K., Gupta, A. and Hennessy, J. L., Performance Evaluation of
Memory Consistency Models for Shared-Memory Multiprocessors, ACM/IEEE.
Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV), Santa Clara, CA. April, 1991.

4. Mowry, T. and Gupta, A. "Tolerating Latency Through Software-Controlled
Prefetching in Scalable Shared-Memory Multiprocessors," Journal of Parallel and
Distributed Computing. June, 1991. To appear.

5. Gupta, A., Hennessy, J., Gharachorloo, K.. Mowry, T. and Weber. W.-D.,
Comparative Evaluation of Latency Reducing and Tolerating Techniques, 18th
International Symposium on Computer Architecture, May, 1991.

6. Gharachorloo, K., Gupta, A. and Hennessy, J., Two Techniques to Enhance the
Performance of Memory Consistency Models, International Conference on
Parallel Processing. 1991.

7. Simoni, R. and Horowitz, M., Dynamic Pointer Allocation for Scalable Cache
Coherence Directories, International Symposium on Shared Memory
Multiprocessing, Tokyo, Japan. April 2-4. 1991.

8. Simoni, R. and Horowitz, M., Modeling the Performance of Limited Pointers
Directories for Cache Coherence, 18th International Symposium on Computer
Architecture, May 27-30, 1991.

9. Goldberg, A. and Hennessy, J., MTOOL: A Method for Isolating Memory
Bottlenecks in Shared Memory Multiprocessor Programs, International Conference
on Parallel Processing (ICPP), 1991.

10. Singh, J. P., Weber, W.-D. and Gupta, A.. SPLASH: Stanford Parallel Applications
for Shared-Memor., Stanford University. Computer Systems Lab, Technical Report
Report, 1991. Submitted for publication.

1I. Maydan, D. E., Hennessy, J. L. and Lam, M. S., An Efficient Method for Exact
Data Dependence Analysis, ACM SIGPLAN 91 Conference on Programming
Language Design and Implementation, June, 1991.

12. Wolf, M. E. and Lam. M. S., A Data Locality Optimizing Algorithm, ACM
SIGPLAN 91 Conference on Programming Language Design and Implementation.
Tune, 1001

13. Lam. M. and Rinard, M., Coarse-Grain Parallel Programming in Jade. ACM
Sigplan, 3rd Symposium on Principles and Practice of Parallel Programming.
April. 1991.

14

14. Gibbons, P. B. "A Synthesis of Parallel Algorithms." Asynchronous PRAM
Algorithms. Reif ed. 1990 Morgan-Kaufmann. San Mateo.

15. Lam, M. "The Software Pipelining Algorithm and Experimental Results,"
Transactions on Programming Languages and Systems. 1990. Submitted.

16. Rothberg, E. and Gupta, A. "Efficient Sparse Matrix Factorization on High-
Performance Workstations--Exploiting the Memory Hierarchy." ACM Transactions
on Mathematical Software. 1991. To appear

17. Rothberg, E. and Gupta, A., A Comparative Evaluation of Nodal and Supernodal
Parallel Sparse Matrix Factorization: Detailed Simulation Results, Stanford
University, Computer Systems Laboratory, Technical Report, CSL-90-416,
February, 1990. Also appears as STAN-CS-90-1305 published under the auspices
of the Computer Science Department.

18. Singh, J. and Hennessy, J. L. "Parallelizing an Ocean Simulation Program:
Experience, Results and Implications," Journal of Parallel and Distributed
Computing. 1990. Submitted.

19. Berlin, A. and Weise, D. "Compiling Scientific Code using Partial Evaluation,"
IEEE Computer. 23, (9): December, 1990.

20. Rothberg, E. and Gupta. A., Techniques for Improving the Performance of Sparse
Matrix Factorization on Multiprocessor Workstations. IEEE Computer Society.
Supercomputing '90, New York, NY. November, 1990.

21. Chow, F. and Hennessy, J. "The Priority-based Coloring Approach to Register
Allocation," IEEE Transactions on Programming Languages and Systems.
October, 1990.

22. Weise, D. and Ruf. E., Computing Types During Program Specialization, Stanford
University, Computer Systems Lab, Technical Report Report, CSL-TR-90-441.
October, 1990.

23. Acharya, A., Tambe, M. and Gupta, A. "Implementation of Production Systems on
Message-Passing Computers," IEEE Transactions on Parallel and Distributed
Systems. 1991. To appear.

24. Gharachorloo, K. and Gibbons, P., Detecting Violations of Sequential Consistency.
3rd Annual ACM Symposium on Parallel Algorithms and Architectures, 1991.

25. Gupta, A. and Weber. W.-D. "Cache Invalidation Patterns in Shared-Memor,
Multiprocessors," IEEE Transactions on Computers. 1991. To appear.

26. Saraswat, V.. Rinard, M. and Panangaden, P., Determinate Constraint
Programming, 1991.

27. Saraswat, V., Rinard, M. and Panangaden, P., A Model for Concurrent Constraint
Programming, 1991.

28. Singh, J. P. and Hennessy, J. L., Automatic and Explicit Parallelization of an N-
Body Simulation. IEEE TENCON '91. 1991.

15

29. Singh, J. P. and Hennessy, J. L. "Parallelizing the Simulation of Ocean Eddy
Currents," Journal of Parallel and Distributed Computing. 1991. To appear.

30. Torrellas, J., Lam, M. and Hennessy, J. L. "Measurement, Analysis, and
Improvement of the Cache Behavior of Shared Data in Cache Coherent
Multiprocessors," IEEE Transactions on Computers. 1991. To appear.

31. Lam, M. S., Rothberg, E. E. and Wolf, M. E., The Cache Performance and
Optimizations of Blocked Algorithms. Fourth International Conference on
Architectural Support for Programming Languages - ASPLOS -IV, April, 1991.

32. Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W.-D., Gupta, A. and Hennessv.
J. L., Overview and Status of the Stanford DASH Multiprocessor, ISSM.I
Conference, Tokyo, Japan. April, 1991.

33. Singh, J. P. and Hennessv, J. L., An Empirical Investigation of the Effectiveness
and Limitations of Automatic Parallelization, International Symposium of Shared
Memory 'Multiprocessing (ISSMM), Tokyo, Japan. April, 199 1.

34. Wolf, M. E. and Lam, M. S. "A Loop Transformation Theory and Algorithm to
Maximize Parallelism," IEEE Transactions on Parallel and Distributed Systems.
July, 1991. To appear.

35. Wolf, M. and Lam, M., A Loop Transformation Theory and Algorithm to
Maximize Parallelism, Principles of Programming Languages, January, 1991.

36. Williams, T. E., Analyzing the Latency and Throughput Performance of Self-
Timed Pipelines and Rings. V'LSI-91 IFIP Conference, August. 1991.

37. Williams. T. E. and Horowitz. M. A., A 160nS Division Implementation Using
Self-Timing and Symmetric Overlapped Execution, IEEE Conference on Cornpu:er
Arithmetic (ARITH-10), June, 1991.

16

4. Project Staff

Faculty:
John Hennessy jlh@vsop.stanford.edu 415/725-3712

Principal Investigator
Mark Horowitz horowitz@chroma.stanford.edu 415/725-3707

Associate Investigator
Anoop Gupta ag@pepper.stanford.edu 415/725-3716
Monica Lam lam@k2.stanford.edu 415/725-3714
Daniel Weise daniela mojave.stanford.edu 415/725-3711
Teresa Meng menga tilden.stanford.edu 415/725-3636
David Dill dill@amadeus.stanford.edu 415/725-3642

Research Staff:
Charlie Orgish
David Nakahira
Laura Schrager

Graduate Students:
Saman Arnarasinghe Martin Rinard
Jennifer Anderson Ed Rothberg
Rohit Chandra Arturo Salz
Tom Chanak Dan Scales
Helen Davis Rich Simoni
Andrew Erlichson JP Singh
Kourosh Gharachorloo Mike Smith
Aaron Goldberg Larry Soule
Steve Goldschmidt Don Stark
Truman Joe Luis Stevens
Lydia Kavraki Steve Tjiang
Jim Laudon Anthony Todesco
Dan Lenoski Josep Torrellas
John Maneatis Andrew Tucker
Margaret Martonosi Wolf Weber
Dror Mavdan Ted Williams
Arul Menezes Malcolm Wing
Tod(\!,r -- Drew Wingard
Jason Nieh Michael Wolf
Karen Pieper

17

Comparative Evaluation of
Latency Reducing and Tolerating Techniques

Anoop Gupta, John Hennessy,
Kourosh Gharachorloo, Todd Mowry, Wolf-Dietrich Weber

Computer Systems Laboratory
Stanford University, CA 94305

Abstract pipelining of memory references. Prefeiching techniques [12. 17,

22, 24] hide the latency by bringing data close to the processor be-
Techniques that can cope with the large latency of memory accesses fore it is actually needed. Multiple contexts [3. 13, 14. 27] allow a
are essential for achieving high processor utilization in scalable processor to hide latency by switching from one context to another
shared-memory multiprocessors. In this paper, we consider four when a high-latency operation is encountered.
prominent architectural techniques that address the latency problem, Our primary objective in this paper is to characterize the benefits
namely (i) hardware coherent caches, (ii) relaxed memory consis- and costs of these four latency hiding technioues in a systematic
tency. (iii software-conti'olledprefetching, and (i, multiple-context and consistent manner. Although one can find papers that focus on
processors. While some data has been available in the pas. regarding the performance of the individual techniques 18. 12. 30]. it is not
the benefits of the individual techniques. no stud% evaluates all of possible to use these papers to perform a comparatve evaluation.
the techriques -within a consistent framework. Tli-, paper attempts since frequently the benchmark programs used are different, or the
to fill the above gap by providing a comprehensive stud,. of the ben- architectural assumptions made are different, or both. We believe
efits of the four techniques. both individually and in combinations, that a consistent comparative evaluation is essential to understand-
using a consistent set of architectural ass imptions. The results in ing the tradeoffs implicit in the use of the d-ifferent techruques.
this paper have been obtained using detailed simuaiaons of a large- Furthermore. since several of the techniques can be provided on the
scale sha-ed-memory multiprocessor. Our results show that caches same multiprocessor. the second objective of this paper is to evalu-
and relaxed consistency uniformly improve perfor-mance. The im- ale the interactions and gains from the combined use of the various
pro'ements due to prefetching and multiple contexts are sizeable, techniques.
but are much more application-dependent. CorrbLb-,axions of the var- The results presented in this paper are obtained from detailed
ious tec "iques generally attain better performance than each one on architectural simulations performed for three allel applcations.
its own. The exception is multiple contexts with prefetching, which The architecture used Ls based on the Stanford DASH multiproces-
did not work well together. Overall, we show tha: using suitable sor [19], a large-scale shared-memory multiprocessor that provides
combinations of the techniques, a factor of 4 to 7 improvement in coherent caches, a relaxed memory consistenc model, and support
performance can be obtained, for softwarc-controlled prefetching. The appll'laions we study are

a particle-based simulator used in aeronautics .M.PD) [21]. an LU-
decomposition program (LU). and a digita! logic simulation prgram

1 Introduction (PTHOR) [28]. The applcations are typical of those that may be
found in an engineering environment.

Large-scale shared-memory multiprocessors are expected to have Our results show thai the provision of coherent caches leads to
remote memory reference latencies of several tens to hundreds of significant perfotmance benefits. In fact. for this reason, all re-
processor cycles [19, 23. 26, 31]. The large latencies arise partly maining experiments in the paper were done assuming that coher-
due to the increased physical dimensions of the parallel machine and ent caches are provided. Our studies of the sequential consistency
partly due to the ever increasing clock rates at which the individual model versus relaxed memory consistency models show that relaxed
processors operate. These large memory latencies can quickly offset consistency models uniformly improve perforn'ance. Prefetching
any performance gains expected from the use of parallelism. Tech- and multiple-context processors also provide performance improve-
niaues that can help to reduce or hide these latencies are essential ments, but the mtgnitude varies considerably depending on the ap-
for achieving high processor utilization. phcation. Combinations of relaxed consistenc% with prefetching, or

To cope with the large latencies, several different architectural relaxed consistency with multiple contexts work well. Surprsingly.
techniques have been proposed. Coherent caches 3. 4. 19, 31] al- no further gains are achieved when both prefetching and multiple
lou shared read-write data to be cached and sigrificantly reduce contexts are used. Overall. a suitable combination of the latency
the memory latency seen by the processors. Relazed memor%' con- reducingl'.olerating techniques discussed in this paper boost perfor-
sistency models [1, 6. 9] hide latency by alowing buffering and mance by a factor of 4 to 7 for the applications studied.

The paper is organized as follows. Section 2 aescribes the archi-
tectural assumptions, the benchmark applicatnons, and the simulator

r%.vi,<ed verion t ,apr.PCtr in 1991 used in this study. Simulation results for the performance of each of
the techniques are presented in Sections 3-6. Finally, we conclude

I:nttrnal. . r ' S ' . i " (7 "ti r in Section 7.

Arch i t cc t rtire

Read Operations
Hit in Pnmary Cache I pclock
Fill from Secondary Cah 1a pclock

Memr' FillCS !tfrm Local Node 26 pclock

Sion Fill from Home Node (Home - Local 72 pclockL------- 1-Ho U I from -Remote Nodie ('Remote -- Home Lncab 90 ip'lock

%,rite Operations

Pn11*J.' Owned b. Seconda Cache 2 pclocL
Cache Owned by Local Node 18 pclock

Owned in Home Node (Home Local; 6 pclock•- Owned m Remote Node (Remots - Home Local) 82 pclock
j Bu

r Table 1: Latency for various memory system operations in processor
Secorand. clock cycles (1 pclock = 30 ns).

c~he Cache

of the node bus is 133 Mbytes/sec. and the peak network bandwidth
L Processor Enironment is approximately 150 Mbytes/sec into and 150 Mbytes/sec out of

each node)

Architecture The latency of a memory access in the sunulated architecture
depends on where in the memory hierarchy the access is serviced.

Figure 1: Architecture and processor environment- Table 1 shows the latencies for servicing accesses at different lev-
els of the hierarchy, in the absence of contention. The latency

2 Multiprocessor Architecture, Benchmark shown for writes is the time for retanng the request from the write
buffer. This latency is the tume for acquirng exclusive ownership

Applications, and Simulator of the line, which does not necessarily include the time for receiv-
ing acknowledgement messages from invalida-ions. The following

To enable mearngful performance comparisons between the differ- naming convention is used for describing the memory hierarchy.
ent techniques it is necessary to focus on a specific class of multi- The local node is the node that conains the processor originating
processor architectures. The reason is that the tradeoffs may vary a given request, while the home node is the ncde tha contains the

depending on the architecture chosen. For example. the tradeoffs main memory and directory for the given physi:al memory address.
for a small bus-based multiprocessor where broadcast is possible A remote node is any other node.
and miss latencies are ten to twenty cycles are quite different from
the tradeoffs for a scalable multiprocessor where broadcast is not
possible and miss latencies may be a hundred or more cycles. Mis
section presents the architectural assumptions, the benchmark appLi- In this subsection we describe the cornputat:,nal structure of the
cations, and the simulation environment used to get the performance three benchmark applications used in this pa,=. This information
results, will be useful in later sections for understandng the performance

results. The selected applications are representative of algorithms

2.1 Architectural Assumptions used in an engineering computing environrineme All of the appli-
cations are written in C. The Argorne Natioral Laboratory macro

For this -,udv, we have chosen an architecture that resembles the package [201 is used to provide synchioniza.'n and sharing prim-
DASH multiprocessor [19], a large-scale cache-coherent machine itives. Some general statistics for the benchmarks are shown in
currently being built at Stanford. Figure 1 shows the high-level Table 2.
orgarzation of the simulated architecture. The architecture con- MP3D [21] is a 3-dimensional particle simulator. It is used to
sists of several processing nodes connected through a low-latency study the pressure and temperature profiles created as an object flies
scalable interconnection network. Physical memory is distributed at high speed through the upper atmosphere. The primary data ob-
among the nodes. Cache coherence is maintained using an invalidat- jects in MP3D are the particles representing the air molecules), and
ing. distributed directory-based protocol. For each memory block, the space cells (representing the physical space. the boundary con-
the directory keeps track of remote nodes caching it. When a write ditions. and the flying object). The overall comnputauon of IP3D
occurs, point-to-point messages are sent to invalidate remote copies consists of evaluating the positions and veloc-ties of particles over
of the block. Acknowledgement messages are used to inform the a sequence of time steps. Dunrg each time sep, the particles are
originating processing node when an invalidation has been corn- picked up one at a time and moved according t their velocity vec-
pleted. tors. If two particles come close to each other. ,,ey may undergo a

We use the actual parameters from the DASH prototype wher- collision based on a probabiLstic model. Coll's1 ons Wtth the object
ever possible. but have removed some of the limitations that were and the boundaries are also modeled. The simuazor is well suited to
imposed on the DASH prototype due to design effort constraints parallelization because each parcle can be tre.a:ed independently a
Figure 1 also shows the organization of the processor environmenL each time step. The program is parallelized by ctatically dividing the
Each node in the system contains a 33Mhz MIPS R3000,R3010 pro- particles equally among the processors.* The rain synchronization
cessor connected to a 64 Kbyte write-through pnrmary data cache. consists of barriers between each time step. For our experiments
The write-through cache enables processors to do single-cycle write we ran MP3D with 10,000 particles, a 14xZ-1x7 space array, and
operations. The primary data cache interfaces to a 256 Kbyte sec- simulated 5 time steps.
ondary write-back cache. The interface consists of a read buffer LU performs LU-decomposition of dense ma--rices. The primary
and a write buffer. The write buffer is 16 entries deep. Reads can
bypass writes in the write buffer if permitted by the memory con- pen [2.2] md heefoe resuts thouid not be comprtose d npr e d]v

sistency model. Both the primary and secondary caches are lockup- 2To mminuze cache miss peffati, the paicles asgred to a prXesot rn
free [15]. direct-mapped, and use 16 byte lines. The bus bandwidth allotmied from shard-memory m thi procesor's node

Page 2

performance estimates. For example, consider the MP3D applica-
Table 2: General statistics for the benchmarks. tion. In real life, the application is run with enough particles to fill

the complete main memory of a machine. Since at each tune step in
y.es Re-ad S WritesDa Se the application all particles are moved (i.e., the complete memoryICycles Reads Wnts Data Size

Program . iI (K K Locks Barr)ers IKBvts is swept through). the caches are expected to miss on each particle.
"P . 536 Had wc retained the 64 Kbyte primary and 256 Kbte scondar%

- . 5. 10 0 053_6 caches in the simulator, then we would have had to run MP3D with
L-C. 1 27._8_61 5543_ Z,727--3, 184 29 653 at least 125,000 particles to achieve realistic cache behavior. ThisPTHOR I t9.031 3774 454 75,878 2016 292.5 would have taken extremely long to run.

We see no easy answer to the above question and are currently
investigating the issues. For this study, however, we have chosen

data structure in LU is the matrix being decomposed. Working to scale down the cache sizes to get a more realistic problem size
from left to right, a column is used to modify all columns to its to cache size ratio. We scale down the processor caches to 2 Kbvte
right. Once all columns to the left of a column have modified that primary and 4 Kbyte secondary caches.' For MP3D, we get miss
column, it can be used to modify the remaining columns. Columns ratios approximating a large problem with full-size caches. How-
are statically assigned to the processors in an interleaved fashion. ever. we use only 10.000 particles and thus reduce the simulation
Each processor waits until a column has been produced, and then time substantially. The data sets for the other two applications were
that column is used to modify all columns that the processor owns.3 also adjusted to get realistic cache hit ratios and reasonable -un
Once a processor completes a column, it releases any processors times. For LU, the data set size is chosen such that the data starts
waiting for that column. For our experiments we performed LU- fining into the combined caches of the processors only when the
decomposition on a 200x200 matrix, bottom third of the matrix remains to be factored. As a result, the

PTHOR [281 is a parallel logic simulator based on the Chandy- processors get poor cache hit ratio in the beginning, and high hit ra-

Misra simulation algorithm. Unlike centralized-time algorithms, tios towards the end. This kind of behavior is not atypical of many

this algorithm does not rely on a single global time during sim- numerical applications. For PTHOR. our experiments use a circuit

ulation. The primary data structures associated with the simulator with 11.000 gates. However. on the real machine, we expect to be

are the logic elements (e.g., AND-gates. flip-fiops;, the nets (wires using circuits with hundreds of thousands of gates. We thus reduce

linking the elements), and the task queues which contain activated the cache size and the circuit size proportionately. To substantiate

elements. Each processor executes the following loop. It removes our results, we have also done experiments with larger cache sizes.

an activated element from one of its task queues and determines Although we do not present the results here, due to lack of space,

the changes on that element's outputs. It then looks up the net the results showed similar trends.

data .tucture to determine which elements are affected by the out-
put change and schedules the newly activated elements on to task
queues. In the case that a processor runs out of tasks, it spins on 3 Coherent Caches
the task queues until a new task is scheduled. This time shows up
as busy time in our experinents, ever. though it should rightfully The first of the four techniques that we study is caching of shared
be cointed as synchronization time. Tlis fact leads to variations in data. The use of processor caches is a weU accepted technique
bus% trime from experiment to experiment, even though the amount for reducing latencies in umprocessors. Their use in multiproces-
of useful work being done remains approximately the same. For sors, however, is complicated by the fact that the caches need to
our experiments we simulated five clock cycles of a small RISC be kept coherent. While the coherence problem is easily solved for
processor consisting of the equivalent of 11.000 two-input gates. small bus-based multiprocessors through the use of snoopy cache-

coherence protocols [41, the problem is much more complicated
for large-scale multiprocessors that use general interconnection net-

2.3 Simulation Environment works [5]. As a result, some existing large-scale multiprocessors do

An event-driven simulator is used to simulate the major compo- not provide caches (e.g.. BBN Butterfly [26Th others provide caches
that must be kepi coherent by software (e.g.. IBM RP3 [231), and

nents of the architecture at the behavioral level. For example, the th es pe f a coherent caches (e.g..caches. the cache coherence protocol, the contention and arbitration still others provide full hardware support for coherent caches (e g.,
for buses, are all modeled in etail. the simulations are based on Stanford DASH [19]). In this section we evaluate the performance

a 16 processor configuration. We do not go beyond 16 processors benefits when both private and shared read-rite data are cacheable

since the concurrency requirements are very large for multiple con-
text simulations. For example, when modeling 4 hardware contexts private data are cacheable.

per processor, 16 processors require the application to support 64 An alternative to hardware coherence is software cache coher-

concurrent processes. Some of our existing applications do not scale ence. Software schemes require sophisticated compiler technology

well beyond 64 threads. The architecture sirmulator is tightly cou- and, in general, are conservative since they do not employ full dy-

pled to the Tango reference generator [10] to assure a correct inter- namic information. This implies that the performance of software

leaving of accesses. For example. a process doing a read operation coherence schemes will usually lie berween not caching shared data

is b!ocked until that read completes, where the latency of the read is and hardware coherent caching of shared data. Due to lack of appro-

determined by the architecture simulator. Unless specific directives priate compiler technology, we could not evaluate the effectiveness

are given b% an application, main memory is distributed uniformly of software schemes.

across all nodes using a round-robin page allocation scheme. Figure 2 presents a breakdown of the normalized execution times

We now come to a difficult methodological problem that shows up with and without caching of shared data for each of the applications.

when simulatng large muluprocesors. Given that detailed simula- Private data are cached in both cases. The experiments assume the

tors are enormously slower than the real machines being simulated, sequential consistency model, so that no buffering or pipelning of

one can only afford to simulate much smaller problers/applications cache misses is allowed. The execution time of each application

than those that % . :,c run oi, ;,, . al manae. The question is normalized to the execution tame of the case where shared data

arises of how to scale the machine parameters so as to get realistic 'Them caches arm ord) us d for 4 dat. Instruction md pnva-, d-u

SMan eory for stori couis that Amowned aproces s references are not sent to the cache simulator and are implicitt1 msumed to hit

altoated frm sared.remory ui that procesors* node.

Page 3

SJ -.- b,-., Unfortunately. SC imposes severe restrictions on the outstanding1wnt, M: 4, accesses that a process may have, thus limiting the buffering and
I ls ., pipelining allowed. One of the most relaxed models is the release

S 1.1 consasien-s [9] (RC) model. Release consistency requires thai syn-
71 chronuzation accesses in the program be identified and classified as
S -

either acquires (e.g.. lock) or releases (e.g., unlock). An acquire
so 17 is a read operation (can be pan of a read-modif%-wite) that gains
40 - I Jpermission to access a set of data, while a release is a write oper-fl -4 ation that gives away such permission. Tlis information is used to

2 U 18.1 23 provide flexibility in buffering and pipelining of accesses between
10 synchronizations. Thr main advantage of the re!axed models is0 .o 7.0 91)* 6 , 7.2 the potential for increased performance. The mare disadvantage is

No C-*c C. I h.,. C.&.N C~h. C- increased hardware complexity and a more complex programming
MP30 Lu MP~i model.

Other relaxed models that have been discussed in the literature are
Figure 2: Effect of caching shared data. processor consislencv [9, 11], weak consistenc [6]. and DRFO [1].

These models fall between sequential and release consistency mod-

is not cached. The bottom section of each bar represents the busy els in terms of flexibility and are not considered further in this

time or useful cycles executed by the processor. The section above study. For a detailed nerformance evaluation of relaxed memory
it represents the time that the processor is stalled waiting for reads. consistency models, we refer the reader to a previous study 181.
The section above that is the amount of time the processor is stalled
waiting for writes to be completed. The top section, labeled syn- 4.1 Implementation of Consistency Schemes
chronization time, accounts for the time the processor is stalled due
to locks and barriers. Sequential consistency is satisfied in our implementation by ensur-

As expected, the caching of shared read-write data provides sub- ing that the memory accesses from each process complete in the
stantial gains in performance, with benefits ranging from 2.2 to order that they appear in the program. This is achieved bn delaying
2.7 fold improvement for the three programs. The largest benefit the issue of an access until the previous access completes. The pro-
comes from the reduction in cycles wasted due to read misses. The cessors used in this study already stall on reads unti: the read access
cycles wasted due to write misses are also reduced, although the is satisled. In addition, under SC. we explicit.l? stall the processor
magnuude of the benefits vanes across the three programs due to after every write until the write completes.
different write hit rates. The cache hit rates achieved by MP3D. LU. Release consistency can be satisfied by (i: stalling the proces-
and PTIHOR are 80%. 66%, and 77% respectively for shared-read sor on an acquire access until it completes and tu, delaying the
references, and 75%, 97%. and 4*, for shared-write references. It completion of a release access until all previous memory accesses
is interesting to note that these hit rates are substantially lower than complete. In the implementaion assumed in tiis paper. the first
the usual uniprocessor hit rates. The low hit rates arise from sev- condition is automatically satsfied because the processor stalls on
eral factors: the data set size for engineenng applications is large, all read accesses including acqures) until the read is complete.
parallelism decreases spatial localty in the application, and com- To satisfy the second condition for RC. the wr-te buffer is stalled
munication among processors results in invalidation misses. Still, on a release access until previously issued writes complete. To
hardware cache coherence is an effective technique for substantially full- realize the benefits of RC. we allow reads to bypass the write
increasing the performance with no assistance from the compiler or buffer and provide a locxup-free cache such that read-, can be ser-
programmer. viced while there are write misses outstand:ng [81 This ensures

Although caching shared data improves 'he performance substan- that reads are noy stalled due to previous wntes. The lock-up-free
tially. the large number of cache misses and the large latency of each cache also allows multiple write accesses to be pipelined.
miss still keep the processor utilizations low (about 17% for MP3D, Although the conditions for satisfying RC allow accesses and
26% for LU, and 16% for PTHOR). The next three sections study computation following a read to be overlapped and pipeiined with
the effect of three different techniques for dealing with the large la- the read, the implementation we study does not allow such overlap
tency of cache misses by overlapping them with other computation since reads are blocking. The design of processors that allow mul-
and memory accesses. We assume hardware coherent caches for tiple outstanding reads and out-of-order execution of instructions is
the rest of this study. a current topic of research. However, the feasibility of s'ch proces-

sors in addition to their effectiveness in hiding the latency of reads
is still an open question.

4 Relaxing the Memory Consistency Model The cost of implementing RC over SC arises from the extra hard-
ware cost of providing a lockup-free cache and keepin, track of

One way to remedy the large latency of cache misses is to hide multiple outstanding requests. Although this cost is not negligible.
the latency of accesses by buffering and pipelhing the misses. Un- the same hardware features are also required to support prefetching
fortunately. as a result of the combination of distributed memory, and multiple contexts.
caches, and general interconnection networks used by large-scale
multiprocessors [3, 19. 23], multiple requests issued by a processor
may execute out of order. This may result in incorrect program 4.2 Comparison of SC versus RC
behavior if the program depends on certain accesses to complete in
order. Consequently, restrictions have to be placed on the types of Figure 3 presents the breakdown of execution times under SC and
buffering and pipelining allowed. These restrictions are determined RC for the three applications. Some general observations that can
by the memory consistency model supported by the multiprocessor. be made from the breakdown are the following: ai) the major reason

Several memory consistency models have been proposed. Te for RC outperforming SC is that RC does not stall the processor on
strictest model is that of sequenual conasstency [16] (SC). It requires write accesses; and (ii) the read miss time forms a large portion ofthe execution of a parallel program to appear as some interleaving the idle time, especially once we move from SC to RC. As can be
ofthe execution of th parallel proces tona as smentlavine, seen from the results. RC removes all idle time due to write miss
of the execution of the parallel processes on a sequential machine.

Page 4

10:l
" s._" .0 1,0,00,1 finite look-ahead buffer size. With software-controlled prefetching.

- ME A wt. mis.,.n explicit prefetch instructions are issued. Softw are control allows the90- . Reed Miss Tilme prefetching to be done selectively (thus reducing bandwidth require-
3 1. ments) and extends the possible interval between prefetch issue and

, - I&Aactual reference, which is ver n mportant when latencies are large.
L1 Ii

W - 61 al.$The disadvantages of software control include the extra instruction
overhead to generate the prefetches as well as the need for sopl-sti-

S . .cated software intervention. In this study. we consider non-binding

30 -softw are-controlled prefeiciting [22].The benefits due to prefetching come from several sources. The1&9iz 16.9 1&0)!14A r, : most obvious benefit occurs when a prefetzh is issued earl,, enough

that the line is already in the cache b% the time it is referenced.SC Re sc Re sc ReSC o RU SC ot tHowever, prefetching can improve performance even when this is

not possible. When multiple prefetches are issued back-to-back, the
latency of all but the first prefetched reference can be hidden due

Figure 3: Effect of relaxing the consistency model. to the pipelining of the memoryv accesses. Prefetching offers an-
other benefit in multiprocessors that use an ownershi-based cache

latency. The gains are large in MP3D and PTHOR since the write- coherence protocol [4]. If a line is to be modified. prefetching it
miss time constitutes a large portion of the execution time un&r directly with ownership can significantly reduce the vrite latencies
SC (35% and 205c. respectively), while the gain is small in LU due and the ensuing network traffic for obtaining ownership. Network
to the relatively small write-miss time under SC (7%). traffic is reduced in read-modify-write situations, since prefetching

The pipelinig of writes under RC provides another way in which with ownership avoids first fetching a read-shared copy.

RC can outperform SC. If there is a release operation (e.g., unlock)
behind several writes in the write buffer, then a remote processor 5.1 Prefetching Implementation and Assumptions
trying to do an acquire (e.g., lock on the same variable) can observe
the release sooner, thus spinning for a shorter amount of time. In- In our model, a prefetch instruction is similar to a write in that it
deed. Figure 3 shows that synchronization tinies do decrease under is issued to a prefetch buffer (which is identical to a write buffer,
RC. Oserall, the release consistency model provides a speedup over except that it only handles prefetch re.iests) and does not block
sequential consiLencs of about 1.5 for MP3D, 1.1 for LU, and 1.4 the processor. The reason for having a separate prefetch buffer is
for PTHOR. to avoid delaying prefetch requests unrecessarily benrod wrntes in

While relaxing the memory consistency model effectively hides the write buffer [22]. We model a prefetch buffer that is 16 entries
the latency of write accesses, the latency of read misses still re- deep. Once the prefetch reaches the head of tne prefetch buffer.
mains. This is partly due to the fact that a processor with blocking the secondary cache is checked to see whether the Line is already
reads does not allow a read mss to be overlapped with future corn- present. If so. the prefetch is discarded. Otherwise -he prefetch is
putation and memor, accesses. In light of the fact that read miss issued onto the bus, where it is treated Like an% norna memory
times constitute a large portion of the execution time (especially request. Whlien the prefetch response re=,'ns to the prccessor. it is
when the write miss time is removed), there is still room for large placed in both the secondary and pr&-mr caches. If the processor
performance gains for techniques that can hide this latency. Indeed, is executing when this cache fill begins. t: is stalled for four cycles
the prefetching and multiple context techniques discussed in the since the cache line size is four words to model the effect that
next two sections attain most of their benefit by tackling the latency no loads or stores can be executed while the cache is busy. If a
of reads. processor references a location it has prefetched nefore the reswt

has returned, the reference reques: is combined wAith the prefetch
request so that a duplicate set of messages is not sent out and so

5 Prefetching that the reference completes as soon as the prefetch result returns.
Since we did not want to be constrained by the Limits of exsting

Although release consistency hides much of the latency of write compiler technology to automatically add prefetching, and because
misses through buffering and pipelining, it still suffers during read such a compiler was not available to us, prefetches were introduced
misses when reads are blocking. These remaining misses can often manually at the source level of each a,plicatior through macro
be anticipated through knowledge of an application's reference be- statements. These macros covered both read and read-exclusive
havior. Prefetching uses this knowledge to move data close to the prefetches, as well as single cache line and block prefetches. A
processor before it is actually needed, read prefetch brings data into the cache in a read-shared mode,

Prefetching can be classified based on whether it is binding or while a read-exclusive prefetch also acquires excius:ve ownership
non-binding, and whether it is controlled by harauare or software. of the line, enabling a write to that location to complete quickly.
With binding prefetching, the value of a later reference (e.g., a
register load) is bound at the time when the prefetch completes. 5.2 Prefetching Results
This places restrictions on when a binding prefetch can be issued,
since the value will become stale if another processor modifies the We begin with a description of how prefetching was inserted into
same location during the interval between prefetch and reference, each application, and then discuss the results for both sequential
Binding prefetching studies done by Lee [18] reported significant and release consistency.
performance loss due to such limitations. In contrast, with non-
binding prefetching the data is brought close to the processor, but MP3D: Most of the time is spent in a loop where each processor
remains visible to the cache coherence protocol to keep it consistent takes a particle and moves it through one time step. The over-
until the proce.- - . r re: . Hardware-controlled whelming majority of cache misses are caused by references
prefetching includes schemes such as long cache lines and instruc- to two structures within this loop: i the particle which is be-
tion look-ahead [17]. The effectiveness of long cache lines is lim- ing moved (34% of misses), and (L the space cell where the
ited by the reduced spatial locality in multiprocessor applications particle resides (50%). Particles are stayacally assigned to pro-
[7, 29], while instruction look-ahead is limited by branches and the cessors and are allocated to the correponding local memories,

Page 5

100 1"00.0 100.0 5.9 100.0 Pe lae ohaod

60 W 11.2 Synt Tmm
9 0 4A 67. WLi Was~U. Tirrv0 no L Reed Mao. Tim.?.00 . 36.2 7- efS :'

3 so 1 52 189 131Buoy Tlm
7109 722 a ~.1m704 12.3 64.3 .

60 3.O 2,0 61

::] 17[Ir0 440 I * Sf

10 11.0 1Sz I
2A.0 2 2.. 2 3.1 49

10 16.9 16 .0 1.9 10 6 .0 1 114.0
0,

Norml Profortch Normal Prvitch Norrml P,.lotch NormaI Prefetch Normal Proth Normal P '.v4..
SC PC SC RC SC RC

kV3D LU PTHWA

Figure 4: Effect of prefetching.

while space cells are uniformly allocated since they are shared read but not modified, or likely not to be referenced. Whenever
among processors. a processor picks an element from a task queue, we prefetch the
Since a particle must be referenced to determine the space cell element record entries accordingly In addition. we prefetch the
it occupies, we prefetch a particle record two iterations before firsi several levels of the more important Linked lists. Due to
its turn to be moved. In the iteration following the prefetch, the the complex control structure of the application, it is difficult to
particle is read, and the associated space cell is determined and determine where the misses occur. Despite the aid of profiling
prefetched. As a result, when it is time for the particle to be markers that helped determine which sections of code were
moved. both the particle and space cel records are available generating misses, we were only able to increase the coverage
in the cache. We also prefetch several other references that factor to 56%.
occur at time step boundaries, such tha: a total of 87% of all
misses are prefetched (we will refer to this as the coverage The results of the prefetchu=g expenmenrs are shown in Figure
factor). Read-exclusive prefetches are used since the objects 4 Notice that a nev, section has been added to the execution time
are modified durin each iteraUon. bar to account for prefetching overhead. This includes any extra in-

structions executed to do prefetching le.g.. evaluation of conditional
LU: The matrix columns are statical]y assigned to the processors in statements thai help decide whether to prefetch or not, instructions

an interleaved manner, and are allocated to mie corresponding to do address computaton, and the refetch L'structlor itself). anv
local memories. The main computation done by each processor tune for which issuing a prefetch stalls the processor due to a full
consists of reading a pivot column once it is produced, and prefetch buffer, and any stal ie due to the pmirnar cache being
applying the pivot column to each column to its right that the filled with a prefetched line.
processor owns. There are three primary sources of misses For sequential con-s:stenc, we see that most of the benefit comes
in LU: (i) the pivot column when it is read for the first time from reduced read laiencies. and that this more than offsets the
(8%)- (ii) the pivot column when it is replaced by a column it is added prefetch overhead. Wie read-exclus:ve prefetching effec-
applied to and needs to be refetched ("%); and (iii) the owned tively reduces write latencies for MP3D. it offers little or no tn-
colums that the pivot column is applied to 64%). This last provement for PTHOR (since only a small fraction of prefetches
set of misses occurs because the combined size of the owned are read-exclusive) and LU (since 'rAite latencies are already small
columns is larger than the size of the cache, because owned colurns are allocated to loca memory). Prefetch

Each time the pivot column is applied to an owned column, overhead is substantial in the case of LU since there L very little
we prefetch the pivot column in read-shared mode and the computation between references, causing the prefetch generation in-
owned column in read-exclusive mode. Although prefetching structions to be a large fraction of total instructions. The overhead
the pivot column each time causes redundant prefetches. it due to primary cache fills is much less of a problem. The main
reduces the misses when the pivot column is replaced from the difference we see when prefeiching is combited with release con-
processor's cache, resulting in a total coverage factor of 89%. sistency is that the Write latencv has already been eliminated, so the
We found that it is better to e enly distribute the issue of benefits come strictl through reduced read latency.
prefetches throughout the computation rather than prefetching The benefits of prefetching are limuted by sexeral factors. First.
an entire column in a single burst, in order to avoid hot-spotting inserting the prefetches can be difficult. This was especially true
problems. for PTHOR. The diffculty s both identifying the references that

need to be prefetched and scheduling the prefetches far enough inPTHOR: In the main computational loop. each processor picks up advance to effectively hide latcncy. We are currently working on
an activated logic element, computes any changes to the ele- compiler technology to automate this process Secondly, even if a
ment's outputs, and schedules new input events for elements reference is prefetched far enough in advance, cache interference
that are affected by the changes. One of the main data struc- may cause it to be knocked out of the cache before it can be refer-
tures in the program is the element record, which stores all enced. This interference can be either self-interference in the form
information about the type and state of the element. Several of replacements or external interference caused by invaljdlAons. Fi-
fields in the record are pointers to linked lists, or are pointers nally, the overhead of adding prefetches can potentially offset much
to arrays that in turn point to lnked lists. Prefetching is com- of the gain that is realized through reduced latencies, as - see in
plicaed by the presence of linked lists, since to prefetch a list the case of LU.
it is necessary to dereference each pointer along the way. The advantage of prefetching is that sigrm'ficant gains can be
We first reorganized the element record and grouped entries achieved by inserting only a handful of prefetches when the ac-
based on whether they were likely to be modified, likely to be cess patterns are regular and predictable. For MP3D. adding only

Page 6

16 hoes to the source code resulted in speedups of 1.60 and 1.47 6.1 Results vvith Multiple-Context Processors
under SC and RC, respectively. Another great advantage in terms of
hardware cost is that prefetching can be implemented using existing We start our investigation of multiple contexts with an evaluation of
commercial processors. their benefit under sequential consistency. Later we wil examine

the combined benefit when the consistency model is relaxed and
prefetching is added.

6 Multiple-Context Processors Refer to Figure 5 for the results under sequential consistency
We show results for single-context processors as well as 2- and

Although prefetching is useful for many applications, it requires ex- 4-context processors with context switching penalties of 4 and 16
plicit programmer or compiler intervention. Processors with multi- cycles. The height of each bar represents the execution time of the
ple hardware contexts [3, 13, 14. 27] do not have this disadvantage. application under the given scheme. Each bar is broken down into
They make use of increased concurrency to hide latency. Each the following components: bus-, time which represents actual work
processor has several processes assigned to it. which are kept as being done by. the processor, switching time incurred when switch-
hardware contexts. When the context that is currently running en- ing from one context to the next. all idle time which is the total
counters a long-latency operanon, it is switched out and another time when all contexts are idle waiting for a reference to complete,
context is ,tarred. In this manner the memorv laiency of one con- and no switch time which represents time when the current context
text can be hidden with computation of another context. Given is idle but is not switched out. Most of the latter idle time is due
processor caches, the interval between long-latency operations (i.e., to the fact that the processor is locked out of the primary cache
cache trnsses) bec-mes fairly large, allowing just a handful of hard- while fill operations of other contexts complete. Under sequential
ware contexts to hide most of the latency 12. 25. 30). This is in consistency. some of the no switch idle time is due to write luts in
contrast to the early multiple-context processors such as the HEP the secondary cache, which stall the processor for two cycles.
1271, where context switches occurred on every cycle. MP3D benefits greatly from the use of multiple contexts (see

The performance gain to be expected from mul,;ple context pro- the top of Figure 5). The median riun lengths are about 11 cycles
cessors depends on several factors. First, there is the number of long, and the average miss latencies are 50-70 cycles long. With a
contexts. With more contexts available, we are less likely to have context switch overhead of four cycles, we expect to need about 5
a completely idle processor due to running out of ready-to-run con- contexts to completely hide the mss latencies. With two contexts
texts. On the other hand there rmght not be enough parallelism in the we see some reduction in all idle time and with four contexts an
application to support many contexts per processor Secondly, the additional portion of this idle time is eliminated. However, with
is the context switch overhead If the overhead is a sizeable multiple contexts we now, have addi-ional idle time in the form of
tion of the typical run lengths (time between misses) encount. context sw-itch overhead. This time is especially significant when
a lot of time will be wasted with the switching of contexts. Shoiter the context switch overhead is 16 cycies. It is interesting to note that
context switch times require a more complex processor. Thirdly. there s vey little performance improvement going from a switch
the performance depends on the apphcdtion behavior. Under ideal penalty of 16 cycles to one of 4 cycles with 2 contexts. The context
conditions where latencies are constant and misses occur at regular switch time saved simply shows up as additional all idle time.
intervals, a multiple context processor can achiese a high utiLiza- The behavior of LU (middle of Figur-e 5 1 is completely dominated
tion. However, with real applcaions, latencies can vary depending by cache inte.ference. With a single context, the read and write
on where the data resides and what state it is in. At the same time hit rates are 66% and 97% respectively. With two contexts they
misses may be clustered. Both of these will make it impossible to deteriorate to 56% and 38%. and with 4 contexts the,. are down
completely overlap computation of one context with memory ac- to 50% and 16%. These additional misses lead to more context
cesses of the other contexts. Hence the processor utilization will switches and more time wasted on context switching. With 16 cycle
not reach its full potential. Lastly, multiple contexts themselves context swiwt- -- erhead, performance gets worse as more contexts
will affect the perfo.rmance of the memory subsysem. The dffer- are addf - Fs'n t)ough some of the la'encies are hidden, the time
ent contexts share a single processor cache and can interfere with wasl. on context switches dominates. With the 4 cycle context
each other, both constructively and destructively. Also. just as ic :le switch overhead, some gains are possible. The median run lengths
case with relaxed consistency and prefetching. the memory system are 6 cycles long, and the average miss latencies are 20-27 cycles
is more heavily loaded by multiple contexts, and thus latencies may long. The miss latencies are low because a high proportion of them
increase. arr due to the owned columns of the matrix, which are allocated

We presented a preliminary investigation of multiple-context pro- lioi- the local portion of shared memory.
cessors in a previous study [30]. More recently, there have also been PTHOR (bottom of Figure 5) shows another interesting effect.
two analytical evaluations of multiple contexts [2. 25). In this study There is not enough parallelism available in the application to
we prest.nt a more detailed simulation evaluation of the performance achieve good speedup with a large number of processors or con-
of multipl-context processors, and we also consider the combined texts. So even though the run lengths and latencies are favorable
effect with other latency-hiding techniques. We use processors with (they are 7 and 60-80 cycles respectively), the gains achieved with
two and four contexts. W e do not consider more contexts per proces- two contexts are small. Four contexts actually do worse than two.
sor because sixteen 4-context i-ucessors require 64 parallel threads no matter what the context switch overhead is. There simply is not
and ,,,me of our applications do not get very good speedup beyond enough parallelism available to provide useful work for four con-
this point. We use two different context switch oserheads: 4 and texts per processor. The additional contexts spend most of their time
16 cycles. A four-cycle context switch overhead corresponds to busy-waiting on an empty task queue. During this time they hold
flushing/loading a typical RISC pipeline when switching to the new up the useful work being done by the other contexts that did manage
instruction stream. This type of processor would require multiple to find a task. The additional instruction cycles used for spinning
register sets to allow fast switching between them. An overhead of on the task queue are reflected in the graphs as extra busy tame.
sixteen cycles corresponds to a less aggressive implementation. In We note that when we run PTHOR with four processors instead of
our study, we include additional buffers to avoid thrashing when two sixteen, we find that multiple contexts achieve much greater gains:
contexts try to re. .. r."IC, - '- o, "' . i n to the same cache four context-processors run about twice as fast as single-context
line. Without the ouffers, the two contexts could continually knock processors.
the other context's line out of the cache, causing a never-ending The conclusion from the results of our experiments with multiple
stream of read misses. contexts under sequential consistency is that multiple :ontexts can

Page 7

0 0.06.2 Effect of Combining other Schemes with Multiple
1 t.:ko: No

Switch
SAll Contexts

C 90 Switching
- 0 We have seen that multiple contexts with sequential consistency can

70 ?oincrease performance substanually under favorable circumstances.
62J 60.2 An interesting question is whether multiple contexts can gain any

D extra performance when combined with relaxed consistency mod-
.7 j 7 ets. The left and middle sections of the graphs in Figure 6 s&w the

40 :. performance of multiple contexts with SC and RC. respectively. We
30. . 19.6 only show results for a context-switch overhead of 4 cycles. The017' I.A :' major difference bet-*een release consistency and sequential con-

o.A 1 .6 sistency is that write trusses are no longer considered long latency
10 6. 163 16.3 16,9 16.3 operations from the processor's perspective, since writes are simply

,, put into the write buffer. We thus find that median run lengths be-
Single Cbt 2 Cza* 4 Ctxt 2 Clbf 4 Cult tween switches have increased (from 11 to 22 cycles for MP3D and

Switch Laeo ncy 16 Mutil C 1enC from 6 to 14 cycles for LU., and that fewer contexts are required
UPSO Peforman~e wth Mulple coexts (uner S) to eliminate most of the remainig read miss latencies. As a result,

5141A No Switch the gains achieved with four contexts over two contexts are also
140 6.6 *: I Il diminished. As is appu'ent from the results, there is some benefitC 130 - Switching from relaxing the consistency model with multiple contexts. For.2 120o 11.9: c2se, peBruseymroe b. 1 .0 the 4-context case. performance improved by a factor of 1.32 for

1 110 - 1A64 MP3D, 1.24 for LU, and 1.17 for PTHOR when going from SC to
90 1 RC.

so .. Finally, let us consider the combined effect of multiple contexts
70 - 74.0 0. .. and prefetching (see the right portions of the graphs of Figure 6).
z 21. In general. prefetching and multiple contexts aim to hide the same

4i - idle time---tha caused by long latency read and write msses. We
30 -, thus expect the gain of prefetching with multiple contexts to be
2 6 2 less than with single contexts. This is indeed the case. Prefetching

10 ________26 __26 _________0 _improves performance only L.: the cases where multiple contexts

Singie CW 2 Crts 4 Ctx 2 , 4 C" have not been able to hide most of the latency. For example. with
Switch Latency 16 Switch Lte cy 4 MP3D under release consistency. there is a significant performance

LU Performance with Multiple Context (under SC) improvement when going from two to four contexts (top of Figure
6). A similar (albeit somewhat smaller) gain can be achieved by

120 1- 120A4.3 No Switch applying prefetching to the tmo-context case. However. combining
.. pefetching with four contexts .ields wor performwe

c 13U Switching
1 100.0 2 I . Buay are paying the price of orefeizhng overhead, but are not reducing

10 9. g. they9o . the latency. LU and PTHOR show similar trends.
• -90++ + +++ Although prefetching and multiple contexts each aim to reduce

70 3S./ the same latency, there are sene distinguishing features. The big
60 __ advantage of prefetching is t.at it does not require a special pro-

so -cesF,3r. Also, many more acces-ses can he outstanding at any given
40 *15.3 time, thus allowinig their lat~encies to be overlapped. With prefetch-

30 6. ing. each processor can issue an essentially unlimited number of

20 - 36A U.7 prefetch requests. Multiple contexts, on the other hand, are limited
1o IL 2.3 by the total number of contexts, which is expected to be a small
0 ... number. The advantage of mu;tiple contexts is that they can handle

Single CUi 2 Ctala 4 CtUts 2 Cta 4 Cbrta very irregular access patterns which cannot be prefetched efficiently.
Switch Latency 16 Switch I.-ncy 4 In addition, multiple contexts do not require software support.

P'TOR performance with Mutile Conexta (under SC) In our study, prefetching v as added without any regard to the

Figure 5: Effect of multiple contexts. effect it might have on multiple contexts. For example, prefetches
are added in the single contex: case even if they cannot be issued
early enough to completely hide the latency. With multiple contexts,

increase performance significantly when the run length to latency the benefit of such partal latency hiding is diminished because a
ratio is favorable. However, enough parallelism must be available miss will occur, triggering a context switch. If the multiple contexts
in the application to keep the additional contexts busy. We also note would have hidden the miss laenc% anyway, prefetch overhead has
that destructive interference of the contexts in the processor cache just been added without any benefit. This effect becomes more
can undo any gains achieved. Interference is more of a problem with significant as the number of contexts is increased. Multiple contexts
multiple contexts than with prefetching because multiple working thus add another interesting duniension to the question of when to
sets interfere with each other in the same cache. The smaller the prefetch.
number of cycles required for context switching, the lower the total In summar', release consistency helps multiple contexts because
overhead due to multiple contexts. A context switch overhead of it eliminates writes as long laency operations, thus increasing run
16 cycles introduces significant overhead, whereas the overhead is lengths and allowing the remaining laiency to be hidden with fewer
much more reasonable with a 4-cycle switch penalty. The typical contexts. The benefit of adding prefetching to multiple contexts is
run lengths and latencies encountered suggest that a small number small, and may even be negative, especially when Little latency is
of contexts (such as 4) is sufficient to achieve most of the latency left to hide. Inserting prefetches with more awareness of their effect
hiding benefits. on the performance of multiple contexts may achieve better results.

Page 8

O 100.0 U Pfetch Oveteed
I No Switch
coo All ilo

oU Switching
Busy

60 831 2 83.1 4216

150 " . 44.7 3Sso Z iii 36.1.o.

40m 34 44.0- 14 .

M .I.. iiT! 47.9 40.3 4. 6

10 6. 1.9 168 63.8 13 1. 6 16

30

Sjil 2 Cuxte 4 Ctet Single 2 Cutrs 4 Ctel Single 2 Ctet . Ctet

No Prfettch wth SC No Pretetch with AC Pretetch with AC

MPSO Ped~onsianc
12. 873 .

S -i. V* 71.3 "+"
20 740 -_4 4.4 64.3 64.7

2.7: 2.8 4.415

10leo c 1.9 s?.9 1&0 16.0 12.5

20

26.0 2'6-0 26.0 26.0 26.0 28.0 26.0 26.0 26.0

Single 2 Cute 4 CUte Single 2 Cte 4 Ctst Single 2 Cte 4 Ctxte
No Prefetch with SC No Prtetch with RC Preetch with RC

LU Perflormsnce

100 000 U Preh Ovwetwe d

OZ5 NO Switch

9- X* 7 All Idle

s 34* Switching

80 k Busy
70 66 &4 54.

X,, 74. 706
21.9 CS9 ,+::.:

10 n160 2±4 108 4 1 i 4

20

Single 2 Curts 4 Cfte Single 2 CUe 4 Cte Single 2 Cfte 4 Crte

No Prefetch with SC No Preetch with RC Preetch with RC

PTHOR Performance

Figure 6: Effect of combining the schemes (multiple-context schemes have a 4-cycle switch latency).

7 Concluding Remarks to 1.5, arising mainly from the hiding of write lalencies. Sila~r
to the gain from caches, this gain is automatic as long as programs

While several latency hiding techniques have been proposed in the use explicit synchronzation. Since the relaxed models hide laten-

past, a study evaluating the relative performance benefits of these cies by allowing multiple outstanding references, the main hard-
techniques and their combinations had been lacking. Inti a ware requirement (in addition to coherent caches) is lock-up free
per. we have presented such an evaluation for fouw techniques-- caches. Lock-up free caches aie also necessary for prefetching and
coherent caches, rela.'.-d memnory consistency. prefetching, and mul- for multiple-context processors, and thus form a universal require-
tiple contexts---, . :.r a . a z: ural assumptions and mnint for latency hiding techniques.
benchmarks. As expected, the largest single improvement in run- As intended, prefetching was very successful in reducing the stalls
time, a factor of 2.2 to 2.7. came from coherent caches. Relaxing due to read latencies (factor of 2.4 for MP3D. 2.7 for LU, and
the consistency model provided additional performance gains of 1.1 1.4 for P11-OR). Prefetching was less effective in reducing write

Page 9

latency under the stict consistency model, but combined well with scalable shared-memory multiprocessors. In Proc. Int. Symp.
the relaxed consistency model to eliminate both types of latency. Comput. Arch., pages 15-26. May 1990.
The overall speedups were 2.3 for MP3D. 1.6 for LU, and 1.6 [10] S. R. Goldschmidt and H. Davis. Tango introduction and tu-
for PTHOR. While prefetching has the drawback that it requires tonal. Technical Report CSL-TR-90-410, Stanford University,
compiler or programmer intervention, a significant advantage is that 1990.
it requires no major hardware support beyond that needed by RC,
and it can easily be incorporated into systems built using existing [11] J. R. Goodman. Cache consistency and sequential consistency.
commercial microprocessors. Technical Report no. 61. SCI Committee, March 1989.

The multiple context approach, while requiring significant hard- 112] E. Gorrush, E. Granston and A. Veidenbaum. Compiler-
ware support, provided mixed results when the context-switch over- directed data prefetching in multiprocessors with memory hi-
head was 16 cycles. In cases where the concurrency was low (e.g., erarchies. In Int. Conf. SuPercomputing, 1990.
PTHOR' or where there was substantial cache interference (e.g.. [13] R. H. Halstead, Jr. and T. Fujita. MASA: A multithreaded pro-
LU. tie use of multiple contexts made the performance worse. The cessor architecture for parallel symbolic computing. In Proc.
use of relaxed consistency helped multiple context performance by Int. Svmp. Comput. Arch., pages 443-451, June 1988.
hiding write latencies and increasing the run lengths. Under an [14] R. A. lannucci. Toward a dataflow/von Neumann hybrid ar-
aggressive implementation, with use of 4 contexts and a context- chitecture. In Proc. Int. S.?mp. Comput. Arch., pages 131-140,
switch overhead of 4 cycles, the performance benefits were a factor June 1988.
of 3.0 for MP3D, 1.7 for LU, and 1.3 for PTHOR. The interaction
of multiple contexts with prefetching was shown to be complex. [15) D. Kroft. Lockup-free instraction fetch/prefetch cache orgai-
Oftentimes the performance became worse when the two were com- zation. In Proc. Int. Symp. Comput. Arch., 1981.
bined together, because the prefetch overheads were greater than the [16] L. Lamport. How to make a multiprocessor computer that cor-
additional latency that was hidden. To achieve better results, it ap- rectly executes multiprocess programs. IEEE Trans. Comput.,
pears that the prefetching strategy must become more sensitive to C-28(9):241-248. September 1979.
the presence of multiple contexts. [17] R. L. Lee. The Effectiveness of Caches and Data Prefetch

Buffers in Large-Scale Shared Memor-. Multiprocessors. PhD

8 Acknowled ents thesis, University of linois at Urbana-Champaign, May 1987.

gme [18] R. L. Lee. P.-C. Yew, and D. H. Lawrie. Data prefetching

We thank the reviewers for their cormients. This research was in shared memory multiprocessors. In Proc. Ini. Conf. Paral.

supported by DARPA contract N00014-87-K-0828. Anoop Gupta Proc.. pages 28-31, August 1987.

is partally supported by a NSF Presidential Young Investigator [19] D. Lenoski, J. Laudon. K. Gharachorloo, A. Gupta, and J. Hen-
Award with matching funds from Sumitomo, Tandem, and TRW. nessy. The directory-based cache coherence protocol for the
Wolf-Dietrich Weber is partially suppored by IBM and Kourosh DASH multiprocessor. In Proc. Int. Symp. Comput. Arch., May
Gharachorloo is partially supported by Texas Instruments. 1990.

120] E. Lusk, R. Overbeek. et al. Portable Programs for Parallel
Processors. Holt, Rinehart and Winston, Inc.. 1987.

References (21] J. D. McDonald and D. Baganoff. Vectorization of a particle

simulation method for hypersonic rarified flow. In AIAA Ther-[1] S. Adve and M. Hill. Weak ordering - A new definition. In modnamics, Plasmadynarncs and Lasers Conference, June
Proc. Int. Symp. Comput. Arch.. pages 2-14, May 1990. 1988.

[2] A. Agarwal. Performance tradeoffs in multithreaded proces- [22] T. Mowry and A. Gupta. Tolerating latency through software-
lors. MIT VLSI Memo 89-566. Lab. for Comput. Sci., Sub- controlled prefetching in shared-memory multiprocessors. J.
mined for publication, September 1989. Paral. Dist. Computing, to appear in June 1991.

[3] A. Agarwal. B.-H. Lim, D. Kranz. and 1. Kubiatowicz. April: [23] G. F. Pfister, W. C. Brantley. D. A. George, S. L. Harvey, W. J.
A processor architecture for multipocessing. In Proc. Int. Kleinfelder, K. P. McAuliffe, E. A. Melton, V. A. Norton. and
Symp. Comput. Arch., pages 104-114, May 1990. J. Weiss. The IBM research parallel processor prototype (RP3):

[4] J. Archibald and J.-L. Baer. Cache coherence protocols: Eval- Introduction and architecture. In Proc. Ira. Conf. Paral. Proc.,
uation using a multiprocessor simulation model. ACM Trans. pages 764-771, 1985.
Comput. Syst., 4{4):273-298, 1986. [24] A. K. Porterfield. Software Methods for Imp rovement of Cache

[5] W. I. Dally. 're efficient VLSI multiprocessor communica- Performance on Supercomputer Applications. PhD thesis, Rice
tion networks. In Stanford Conference on Advanced Research University, May 1989.
sn VLSI, 1987. [25] R. H. Saavedra-Barrera, D. E. Culler, and T. von Eicken. Anal-

[6] M. Dubois. C. Scheurich. and F. Briggs. Memory access ysis of multithreaded architectures for parallel computing. In
buffering in multaprocessors. In Proc. Int. Symp. Comput. ACM Symp. Paral. Aig. Arch., July 1990.
Arch., pages 434-442, June 1986. [26] G. E. Schmidt. The Butterfly parallel processor. In Proc. In.

[7] S. J. Eggers and R. H. Katz. Evaluating the performance of Conf. Supercomputing, pages 362-365. 1987.
four snooping cache coherency protocols. In Proc. Int. Symp. [27] B. J. Smith. Architecture and applications of the HEP multi-
Comput. Arch., pages 2-15, May 1989. processor computer system. SPIE, 298:241-248, 1981.

[8] K. Gharachorloo. A. Gupta, and J. Hennessy. Performance [28] L. Soule and A. Gupta. Parallel distributed-time logic simu-
evaluation of memory consistency models for shared-memory lation. IEEE Design and Test of Computers, 6(6):32-48, De-
multiprocessors. In Int. Conf. Arch. Support Prog. Lang. Oper. cember 1989.
Syst., April 1991. [29] J. Torrellas. M. S. Lam, and J. L. Hennessy. Measurement,

[9] K. Gharachorloo D. Lenoski. J. Laudon. P. Gibbons, A. Gupta, analysis, and improvement of the cache behavior of shared
and J. Hennessy. Memury consistency and event ordering in data in cache coherent multiprocessors. Technical Report CSL-

TR-90-412, Stanford University, Feb. 1990.

Page 10

[30] W.-D. Weber and A. Gupta. Exploring the benefits of multi-
ple hardware contexts in a multiprocessor architecture: Pre-
hminar ' results. In Proc. Int. Symp. Comput. Arch.. pages
273-280. June 1989.

[31] A. W. Wilson, Jr. Hierarchical cache/bus architecture for
shared memory multiprocessors. In Proc. Int. Symp. Comput.
Arch., pages 244-252, June 1987.

Page 11

